Basement membrane remodeling is essential for Drosophila disc eversion and tumor invasion.
نویسندگان
چکیده
Organ and tissue integrity is often maintained in animals by a specialized extracellular matrix structure called the basement membrane (BM). Accumulated evidence indicates that BM remodeling occurs during development and tumor invasion. Although the BM organizes and functions at the organ level, most past studies have explored its biochemical and in vitro properties. In this study, we monitor the BM in vivo during developmental tissue invasion for disc eversion and tumor invasion in Drosophila and modulate BM integrity with genetic alterations affecting either the whole organism or the targeted discs or tumors. We observe that the degradation of BM by the discs or the tumors is an early event during invasion processes and that preventing BM degradation completely blocks both tissue and tumor invasion, indicating that modulation of BM is essential for developmental and tumor invasion. Furthermore, elements of the invasion machinery, including JNK-induced matrix metalloproteinase (MMP) expression, are shared by both disc eversion and tumor invasion processes. Moreover, we show that although expression of MMP inhibitor, TIMP, is sufficient to halt developmental invasion, inhibition of proteases by both TIMP and RECK are required to block tumor invasion. These data suggest that tumor cells have a more robust invasion mechanism and could acquire metastatic behavior by co-opting developmental invasion programs. This type of co-option may be a general feature contributing to the progression of tumors. Finally, although past efforts using MMP inhibitors have not yielded much success, our results strongly argue that BM modulation could be a critical target for cancer therapy.
منابع مشابه
Site-specific cleavage of basement membrane collagen IV during Drosophila metamorphosis.
Breakdown of basement membranes is an important step in the controlled rearrangement of cells during metamorphosis, cell migration, and metastatic spread of tumor cells. One of our two laboratories found a unique collagenous peptide that only appears during metamorphosis of Drosophila melanogaster. The other laboratory previously reported that during 20-hydroxyecdysone-induced eversion of Droso...
متن کاملالگوی غشای پایه در سرطانهای سلول سنگفرشی، سلول بازال و بازال سنگفرشی با استفاده از رنگهای پاس و رتیکولین
Background and Objective: Previous studies showed that basement membrane pattern is structuraly different in SCC and BCC tumors. BSCC is an epithelial malignant tumor with two histopathologic pattern similar to SCC and BCC. This study was aimed to compare the basement membrane pattern in SCC , BCC and BSCC tumors . Materials and Methods: In this laboratory study, the medical files of patients...
متن کاملTumor Invasion and Metastasis: An Imbalance of Positive and Negative Regulation1
A group of coordinated cellular processes, not just one gene product, is responsible for invasion and metastasis, the most life-threatening aspect of cancer. It is now recognized that negative factors may be just as important as positive elements. Genetic changes causing an imbalance of growth regulation lead to uncontrolled proliferation necessary for both primary tumor and metastasis expansio...
متن کاملTumor Necrosis Factor- -Induced Matrix Proteolytic Enzyme Production and Basement Membrane Remodeling by Human Ovarian Surface Epithelial Cells: Molecular Basis Linking Ovulation and Cancer Risk
The majority of cancer is of surface/cyst epithelial origin. The ovarian surface epithelial cells are organized by a sheet of basement membrane composed mainly of collagen IV and laminin, and it is believed that the basement membrane greatly influences the physiological properties of ovarian surface epithelial cells. Previous studies in our laboratories indicated that loss of the basement membr...
متن کاملCell invasion through basement membrane
Cell invasion through basement membrane is an essential part of normal development and physiology, and occurs during the pathological progression of human inflammatory diseases and cancer. F-actin-rich membrane protrusions, called invadopodia, have been hypothesized to be the "drill bits" of invasive cells, mediating invasion through the dense, highly cross-linked basement membrane matrix. Thou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 8 شماره
صفحات -
تاریخ انتشار 2007